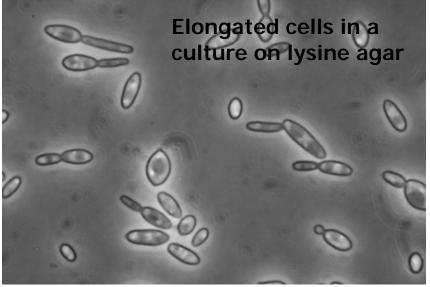
Brettanomyces Research Findings and Management



Bruce Zoecklein Head, Enology—Grape Chemistry Group Virginia Tech Blacksburg, Virginia

www.vtwines.info Enology Notes #92

The many faces of *Dekkera/Brettanomyces*...

Typical cell morphology

Very weird strain in a Thai fruit wine

Source: Lisa Van de Water

Brett Descriptors

- Positive
 - Complex
 - Mature
 - Spicy

Wine/Enology-Grape Chemistry Group

• Negative (partial list)

- Animals

- Sweaty horse/saddle
- Wet dog
- Manure
- Barnyard
- Mousy aftertaste
- Plastic
 - Bandaids
 - Burnt plastic
- Other
 - Burnt beans
 - Rancid
 - Metallic

Population dynamics and effects of Brettanomyces bruxellensis strains on Pinot noir wines

Bruce Zoecklein Enology-Grape Chemistry Group Virginia Tech, Blacksburg

Ken Fugelsang Department of Vitculture and Enology California State University, Fresno

Am. J. Enol. Vitic. 54:294-300

Brettanomyces bruxellensis: Comparison of Growth Profiles and Metabolites among Ten Strains in Pinot Noir Wine

• Question: Can differences in winemaker's experiences with Brettanomyces growth in wine be attributed to strain differences?

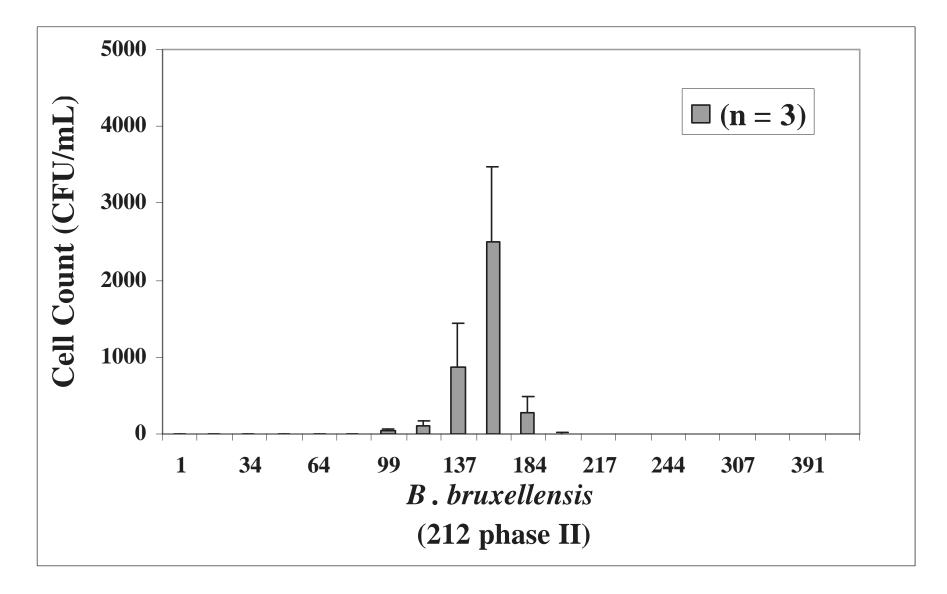
Experimental Design:

Ten genetically-characterized strains of *B. bruxellensis*

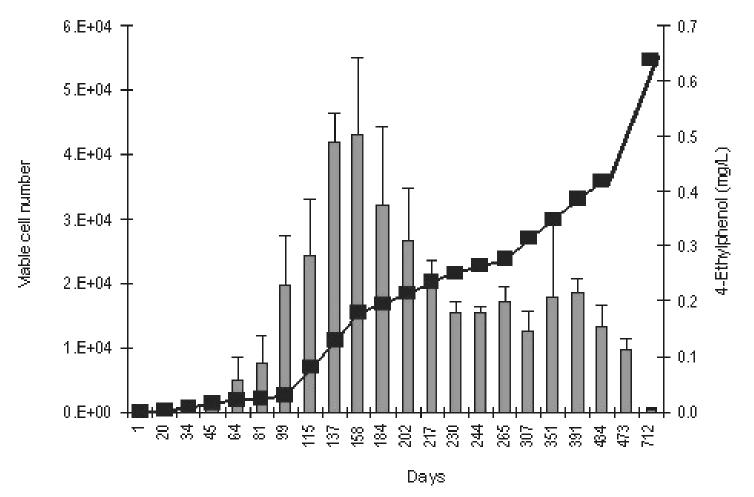
- Pinot noir: 30 mg/L sulfur dioxide at crush. Ferment to dryness, press, clarify at 5°C (6 weeks).
- Rack to sterile containers, DMDC @ 700 mg/L.
- Bottle.
- Initial inoculum: 50 CFU/mL (10 strains x 4 replications) + controls.

Wine/Enology-Grape Chemistry Group

Sampling

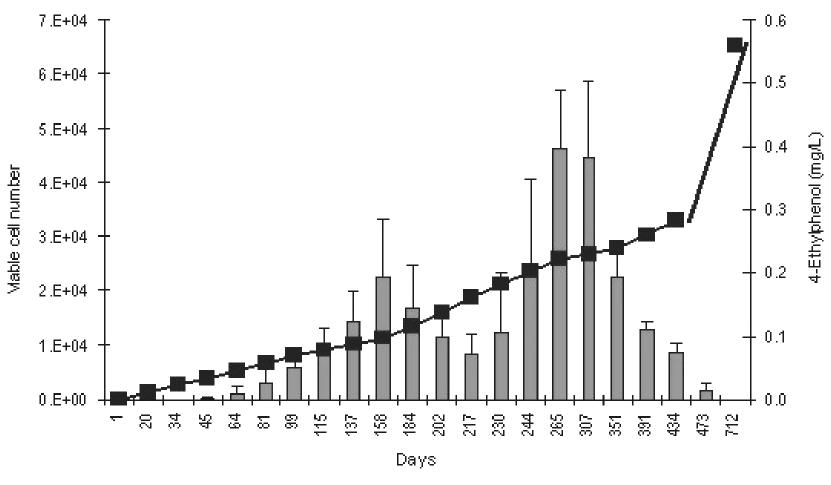


Weekly samples were plated for growth and chemical analysis for up to 712 days.

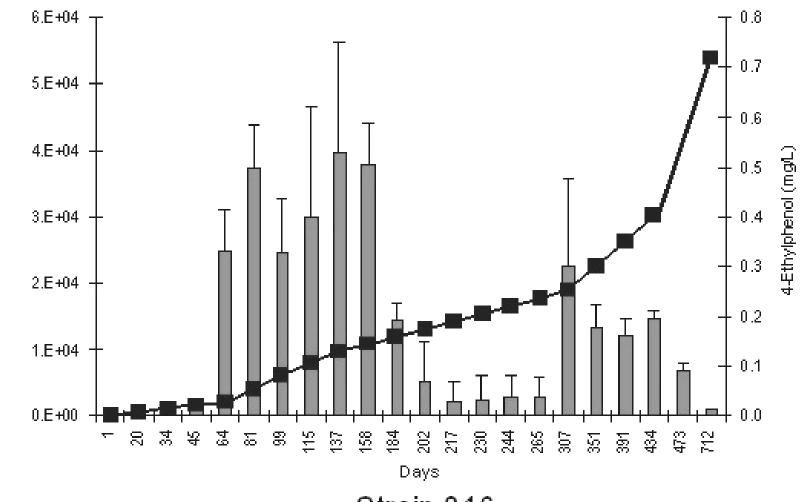

Analyte quantification by HE-SPME, GC/MS:

4-Ethylphenol (4-EP) 4-Ethylguaiacol (4-EG) 2-phenylethanol Guaiacol **Isovaleric** acid Ethyldecanoate trans-2-Nonenal **Isoamyl alcohol Ethyl-2-methylbutyrate**

Results



Results (cont.)

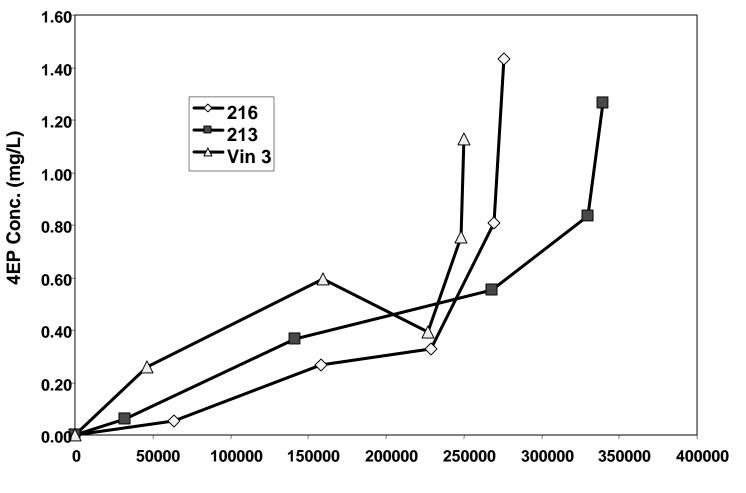

Strain 213

Results (cont.)

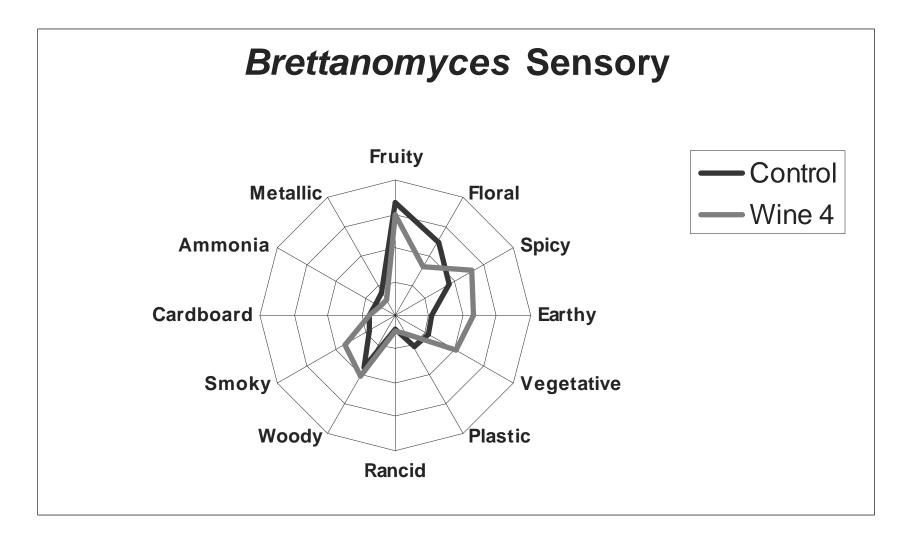
Strain Vin 3

Results (cont.)

Vable cell number


Strain 216

Wine/Enology-Grape Chemistry Group



4-EP vs Cum. Cell Count, averaged

Cumulative Cell Count

Sensory Evaluation

Wine/Enology-Grape Chemistry Group

Conclusions

- Significant strain differences in length of growth cycle and peak population densities.
- Blooms may be explained by VNC.
- Large range of 4-ethylphenol (4-EP).
- Large range of 4-ethylguaicol (4-EG).
- 4-EP and 4-EG correlated.
- 4-EP and 4-EG not correlated to isovaleric acid (IVA).

Conclusions

- With the exception of one strain, most 4-EP was produced <u>after</u> the population reached maximum cell density.
- The correlation between 4-EP and viable cell density was not as strong as the correlation with cumulative cell density.
- There were significant sensory differences among strains.
- 4-EP correlated to low glucose/fructose.

Important Enzymes: Esterases, Glucosidases

• Glycosidases

Wine/Enology-Grape Chemistry Group

Glycosidase Activity in Brettanomyces bruxellensis, other Yeasts, and Oenococcus oeni

H.M. McMahon and B.W. Zoecklein. J. Ind. Micro. Biotech. 23:198-203.

A.K. Mansfield and B.W. Zoecklein. Am. J. Enol. Vitic. 53:303-307.

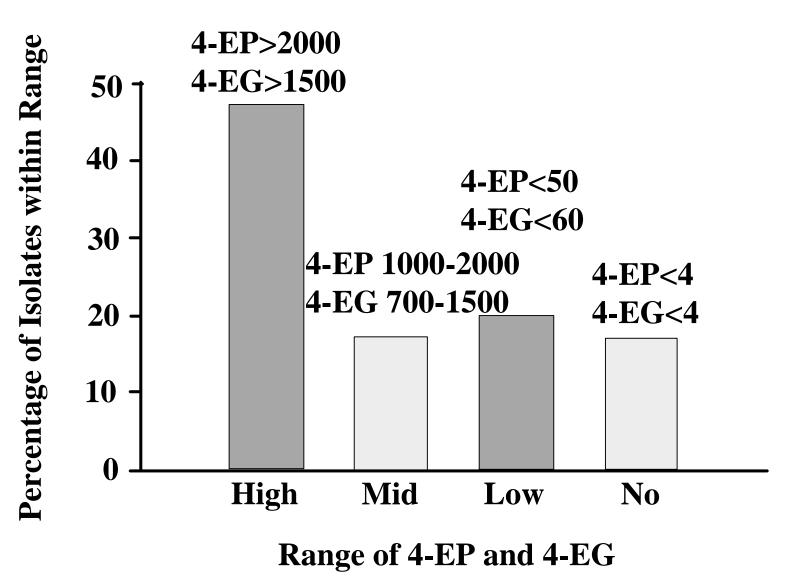
B. bruxellensis	Whole Cell	Permeabilized	Supernatant
strain 211	27 с	142 e	11 bcd
212	5 d	341 a	9 bcd
213	34 c	105 f	14 bcd
214	19 c	110 f	6 cd
215	< LOD	74 g	11 bcd
216	59 b	321 b	24 a
Brux	26 c	182 d	11 bcd
Souche 'Ave'	14 c	138 e	7 cd
Souche 'O'	< LOD	< LOD	4 d
Souche 'M'	82 a	179 d	9 bcd
Vin 1	32 c	14 g	< LOD
Vin 3	22 c	232 c	9 bcd
Vin 4	65 b	25 g	4 d
Vin 5	4 d	21 g	11 bc

Wine/Enology-Grape Chemistry Group

Conclusions

- Large variation among strains in total enzyme activity.
- Eight strains of *Brettanomyces bruxellensis* had high *beta*-glucosidase activity (670-2,650 nM/mL/g dry cells).
- Large variation in supernatant and permeabilized activity.

Results of Physiological Tests


L. Joseph, T. Henick-Kling, L. Conterno

- Regional differences in metabolism
 - 75% of European strains used malic acid, 12% CA strains did
 - All CA strains used nitrate, < 30% of European strains did
 - 63% of European strains used ethanol, 18% CA strains did
 - Most CA strains grew at 37 C, no European strains did

Physical Characteristics

- All isolates tolerant to 10% ethanol or higher.
- 33 isolates grew well at pH 2.
- More than 30% of isolates grew at 10° C.
- More than 35% of isolates grew at 37°C.
- 3 isolates (about 10%) grew at both temperature extremes.
- Almost 50% showed tolerance to 30 mg/L or greater free SO₂ at pH 3.4.

4-EP and 4-EG Production

Climate Impact on *Brett* Metabolites Henschke, 2004

- 4-EP / 4-EG decrease in cool regions
- Malvidin-3-*p*-coumaryl glucoside may be precursor to 4-EP

Brett Growth

- Physical effects
 - Usually grows slowly, over many months
 - Can grow within weeks if conditions are favorable
 - Grows in the wine, almost never as a surface film
 - Growth is stimulated by oxygen, but very little is required
 - Slight CO₂ gas
 - Sediment in bottle
- Sensory effects
 - Reduced varietal character
 - Esterase activity degrades some fruity aromas
 - Floral aromas are also reduced
 - Aromatic compounds
 - Bitter/metallic finish
 - Sometimes: mousy taint (ACPY/ACTPY)
- Lots of strain variation

Brettanomyces Detection

- Sensory
 - Train lab and production crew to recognize danger signals using standards
 - When sensory effects are noticeable, it may be too late
- Matrix effect

Wine/Enology-Grape Chemistry Group

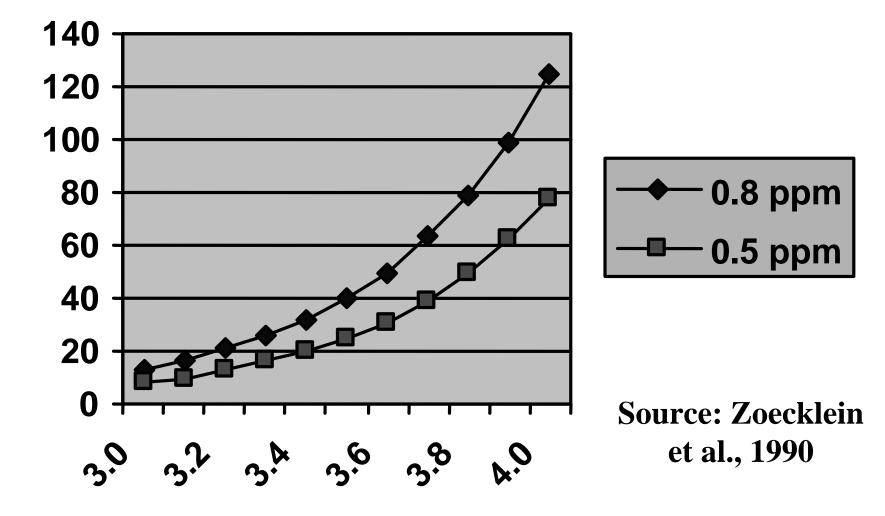
Brett Standards

- Components of FlavorSense, San Rafael, CA, Brett standard
 - 4-Ethylphenol
 - 4-Ethylguaiacol
 - Furfural
 - 3-methyl-2-buten-1-ol
 - Guaiacol
 - Isobutyl alcohol
 - Isobutryic acid
 - Isovaleric acid
 - Propionic acid

Brettanomyces Detection

- Direct Microscopic Examination
 - Difficult when < 1000 cells/ml</p>
 - Requires skill in identifying cells
- Culturing
 - Sampling method is very important
 - Detects only microbes that are present and alive
 - Disadvantages:
 - Must select and prepare media properly
 - False negatives (VNC)
 - Takes time for growth (3-7+ days)
 - Requires skill in identifying colonies

Brettanomyces Detection


- Chemical analysis
 - 'Marker' compounds: 4-EP, 4-EG, fatty acids
 - Tests metabolites, not activity itself
 - Not necessarily directly related (e.g., 4-EP vs. culturing)
- Antibody-based methods
 - ELISA
 - A. Kuniyuki et al. Am. J. Enol. Vitic. 35:143-145
- Nucleic Acid-based methods
 - Polymerase Chain Reaction (PCR)
 - J. Ibeas et al. Appl. Environ. Microbiol. 62:998-1003
 - L. Cocolin et al. Appl. Environ. Microbiol. 70: 1347-1355
 - T. Phister and D. Mills Appl. Environ. Microbiol. 69:7430-7434
- Problems: False positives, expensive, hand-held 'field' unit

Keys to Brettanomyces Management

Generally find only 1 biotype in a wine

- Wine composition
 - Minimize substrates for growth
 - N (Formol titration, www.vtwines.info or Am. J. Enol. Vitic. 53:325-329.)
 - SO₂ management
 - pH management
- Winemaking operations
 - Cellar temperature
 - Population monitoring and control
 - Cellar and barrel sanitation / hygiene
 - Preparation for bottling

Free SO₂ Needed to Achieve 0.5 and 0.8 ppm Molecular SO₂, at Different pHs

Encourage/Discourage Brett

- To ENCOURAGE
 Wine composition
 - Red wine
 - pH > 3.6
 - Molecular $SO_2 < 0.2 \text{ mg/L}$
 - Alcohol 13% or below
 - Residual hexose sugars
 - Biotin, thiamine
 - Amino acids
 - Yeast lees present

- To DISCOURAGE
 <u>Wine composition</u>
 - White wine
 - pH < 3.6
 - Molecular SO₂ 0.4 mg/L or greater
 - Alcohol > 13%
 - RS < 0.2 g/L
 - Vitamins depleted"Nutrient desert"
 - Clarified

Source: Lisa Van de Water

Encourage/Discourage Brett

- To ENCOURAGE
 <u>Winemaking operations</u>
 - Temperature 25-30 C
 - Oxidative conditions
 - New barrels
 - Poor sanitation
 - Cross-contamination
 - Barrels washed in cold water
 - No aggressive barrel sanitation

To DISCOURAGE

Winemaking operations

- Temperature < 16 C</p>
- Keep containers topped / closed
- Older but uninfected barrels
- Good hygiene
- Keep infected wine separate
- High-pressure hot water wash
- Ozone/burn sulfur wick in barrel

Source: Lisa Van de Water

Effect of Barrique Sanitation Procedures -Manuel Malfeito-Ferreira, 2004

- Barrel sanitation experiment
 - Cold rinse, then hot water rinse 3x 70 C
 - Same as above plus SO2 1 month (200 ppm pH3)
 - Cold rinse, fill with 90 C water 15 min
 - Cold rinse, 70 C rinse, steam low pressure 10 min
 - Most effective treatment
- Brett / Dekkera was found 8 mm deep in staves.

Barrels cannot be "sterilized" with SO₂, rinsing, or ozone.

Isolate *Brett*+ barrels.

Ozone Treatment

- High-pressure water wash barrel
 - Thorough blast with sharp stream of hot water
 - Rinse for 2-3 minutes
 - Must remove all organics
 - Cool down completely
- Treat with ozonated water
 - Filter and deionize water before ozonating
 - At least 2-2.5 mg/L ozone in barrel, 0.1 mg/L out
 - Time x Concentration

Source: Lisa Van de Water

Brett and Biofilms

- Liquid / solid interface
- 17 / 35 strains form biofilms (Joseph, 2004)
- pH effect
- Impact of cleaning compounds on biofilms

Wine/Enology-Grape Chemistry Group

Wine/Enology-Grape Chemistry Group

Monitoring Brett

- Have a HACCP-like plan (www.vtwine.info)
- Isolate contaminated barrels
- Sample barrels with disposable plastic pipets
- Top with *Brett*-free wine (filtered, pasteurized and/or Velcorin-DMDC)
- Keep barrels topped-up or not opened
- Monitor carefully before bottling

Acknowledgements

- California Agricultural Technology Institute
- American Vineyard Foundation
- Lallemand, Inc., Montreal, Québec, Canada
- Napa Valley Wine Technical Group
- Virginia Grape Growers Association
- Vino Farms
- Roy Thornton
- Lisa Van de Water

Wine/Enology-Grape Chemistry Group

